K-classes for matroids and equivariant localization

نویسندگان

  • Alex Fink
  • David Speyer
چکیده

To every matroid, we associate a class in the K-theory of the Grassmannian. We study this class using the method of equivariant localization. In particular, we provide a geometric interpretation of the Tutte polynomial. We also extend results of the second author concerning the behavior of such classes under direct sum, series and parallel connection and two-sum; these results were previously only established for realizable matroids, and their earlier proofs were more difficult. Résumé. À chaque matroı̈de, nous associons une classe dans la K-théorie de la grassmannienne. Nous étudions cette classe en utilisant la méthode de localisation équivariante. En particulier, nous fournissons une interprétation géométrique du polynôme de Tutte. Nous étendons également les résultats du second auteur concernant le comportement de ces classes pour la somme directe, les connexions série et parallèle et la 2-somme; ces résultats n’ont été déjà établis que pour les matroı̈des réalisables, et leurs preuves précédentes étaient plus difficiles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ring structures of mod p equivariant cohomology rings and ring homomorphisms between them

In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...

متن کامل

Kazhdan-Lusztig Polynomials of Thagomizer Matroids

We introduce thagomizer matroids and compute the Kazhdan-Lusztig polynomial of a rank n+1 thagomizer matroid by showing that the coefficient of tk is equal to the number of Dyck paths of semilength n with k long ascents. We also give a conjecture for the Sn-equivariant Kazhdan-Lusztig polynomial of a thagomizer matroid.

متن کامل

Equivariant Classes of Matrix Matroid Varieties

To each subset I of {1, . . . , k} associate an integer r(I). Denote by X the collection of those n × k matrices for which the rank of a union of columns corresponding to a subset I is r(I), for all I. We study the equivariant cohomology class represented by the Zariski closure Y = X. This class is an invariant of the underlying matroid structure. Its calculation incorporates challenges similar...

متن کامل

The equivariant Kazhdan-Lusztig polynomial of a matroid

We define the equivariant Kazhdan-Lusztig polynomial of a matroid equipped with a group of symmetries, generalizing the nonequivariant case. We compute this invariant for arbitrary uniform matroids and for braid matroids of small rank.

متن کامل

Equivariant Chern classes and localization theorem

For a complex variety with a torus action we propose a new method of computing Chern-Schwartz-MacPherson classes. The method does not apply resolution of singularities. It is based on the Localization Theorem in equivariant cohomology. This is an extended version of the talk given in Hefei in July 2011.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011